Relationships between arginine degradation, pH and survival in Lactobacillus sakei.
نویسندگان
چکیده
Lactobacillus sakei is one of the most important lactic acid bacteria of meat and fermented meat products. It is able to degrade arginine with ammonia and ATP production by the arginine deiminase pathway (ADI). This pathway is composed of three enzymes: arginine deiminase, ornithine transcarbamoylase and carbamate kinase, and an arginine transport system. The transcription of the ADI pathway is induced by arginine and subjected to catabolite repression. In order to understand the physiological role of the degradation of this amino acid we investigated the growth of bacteria under various conditions. We show that arginine degradation is responsible for an enhanced viability during the stationary phase when cells are grown under anaerobiosis. Arginine is necessary for the induction of the ADI pathway but in association with another environmental signal. Using a mutant of the L-lactate dehydrogenase unable to lower the pH we could clearly demonstrate that (i) low pH is not responsible for cell death during the stationary phase, so survival is due to another factor than elevated pH, (ii) neither low pH nor oxygen limitation is responsible for the induction of the ADI pathway together with arginine since the ldhL mutant is able to degrade arginine under aerobiosis.
منابع مشابه
The pentose moiety of adenosine and inosine is an important energy source for the fermented-meat starter culture Lactobacillus sakei CTC 494.
The genome sequence of Lactobacillus sakei 23K has revealed that the species L. sakei harbors several genes involved in the catabolism of energy sources other than glucose in meat, such as glycerol, arginine, and nucleosides. In this study, a screening of 15 L. sakei strains revealed that arginine, inosine, and adenosine could be used as energy sources by all strains. However, no glycerol catab...
متن کاملExpression of the arginine deiminase pathway genes in Lactobacillus sakei is strain dependent and is affected by the environmental pH.
The adaptation of Lactobacillus sakei to a meat environment is reflected in its metabolic potential. For instance, the ability to utilize arginine through the arginine deiminase (ADI) pathway, resulting in additional ATP, represents a competitive benefit. In L. sakei CTC 494, the arc operon (arcABCTDR) shows the same gene order and organization as that in L. sakei 23K, the genome sequence of wh...
متن کاملPurification and characterization of an arginine aminopeptidase from Lactobacillus sakei.
An arginine aminopeptidase (EC 3.4.11.6) that exclusively hydrolyzes basic amino acids from the amino (N) termini of peptide substrates has been purified from Lactobacillus sakei. The purification procedure consisted of ammonium sulfate fractionation and three chromatographic steps, which included hydrophobic interaction, gel filtration, and anion-exchange chromatography. This procedure resulte...
متن کاملIdentification, technological and safety characterization of Lactobacillus sakei and Lactobacillus curvatus isolated from Argentinean anchovies (Engraulis anchoita)
In this study, the identification and characterization of Lactobacillus previously isolated from fresh anchovies (Engraulis anchoita) are investigated. 16S rDNA partial sequencing assigned all the isolates to belong to the Lactobacillus sakei/curvatus group. Fourteen out of 15 isolates were identified as L. sakei by phenotypic traits: they exhibited catalase activity and fermented melibiose, al...
متن کاملGrowth and arginine metabolism of the wine lactic acid bacteria Lactobacillus buchneri and Oenococcus oeni at different pH values and arginine concentrations.
During malolactic fermentation (MLF) in grape must and wine, heterofermentative lactic acid bacteria may degrade arginine, leading to the formation of ammonia and citrulline, among other substances. This is of concern because ammonia increases the pH and thus the risk of growth by spoilage bacteria, and citrulline is a precursor to the formation of carcinogenic ethyl carbamate (EC). Arginine me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FEMS microbiology letters
دوره 180 2 شماره
صفحات -
تاریخ انتشار 1999